Let $S$ be a set of positive integers, and let $D$ be a set of integers larger than $1$. The game $i$-Mark$(S,D)$ is an impartial combinatorial game introduced by Sopena (2016), which is played with a single pile of tokens. In each turn, a player can subtract $s \in S$ from the pile, or divide the size of the pile by $d \in D$, if the pile size is divisible by $d$. Sopena partially analyzed the games with $S=[1, t-1]$ and $D=\{d\}$ for $d \not\equiv 1 \pmod t$, but left the case $d \equiv 1 \pmod t$ open. We solve this problem by calculating the Sprague-Grundy function of $i$-Mark$([1,t-1],\{d\})$ for $d \equiv 1 \pmod t$, for all $t,d \geq 2$. We also calculate the Sprague-Grundy function of $i$-Mark$(\{2\},\{2k + 1\})$ for all $k$, and show that it exhibits similar behavior. Finally, following Sopena's suggestion to look at games with $|D|>1$, we derive some partial results for the game $i$-Mark$(\{1\}, \{2, 3\})$, whose Sprague-Grundy function seems to behave erratically and does not show any clean pattern. We prove that each value $0,1,2$ occurs infinitely often in its SG sequence, with a maximum gap length between consecutive appearances.
翻译:$ 2 是一个正整数, 而$ 则是一组大于美元的整数。 美元= 1, t-1美元, 美元=2美元, 美元=2美元=2美元, 美元=2美元=2美元=1美元=2美元=2美元=1美元=2美元=1美元=1美元=2美元=1美元=2美元=2美元=1美元=2美元=1美元=2美元=1美元=1美元=1美元=2美元=2美元=2美元=1美元=2美元=10美元=2美元=2美元=10美元=equiv1美元=1美元=1美元=1美元=1美元=1美元=2美元=1美元=2美元+美元=1美元=1美元=2美元=1美元=美元=1美元=1美元=1美元=1美元=2美元=2美元=1美元=2美元=2美元=2美元=2美元=2美元=1美元=2美元=1美元=2美元=1美元=1美元=1美元=1美元=1美元=2美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元, 美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元, 美元, 美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1美元=1