Single image dehazing is a challenging task, for which the domain shift between synthetic training data and real-world testing images usually leads to degradation of existing methods. To address this issue, we propose a novel image dehazing framework collaborating with unlabeled real data. First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps, i.e. the latent haze-free image, the transmission map, and the global atmospheric light estimate, respecting the physical model of a haze process. Our DID-Net predicts the three component maps by progressively integrating features across scales, and refines each map by passing an independent refinement network. Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing. Specifically, we encourage the coarse predictions and refinements of each disentangled component to be consistent between the student and teacher networks by using a consistency loss on unlabeled real data. We make comparison with 13 state-of-the-art dehazing methods on a new collected dataset (Haze4K) and two widely-used dehazing datasets (i.e., SOTS and HazeRD), as well as on real-world hazy images. Experimental results demonstrate that our method has obvious quantitative and qualitative improvements over the existing methods.


翻译:单一图像解色是一项具有挑战性的任务, 合成培训数据与真实世界测试图像之间的领域转移通常会导致现有方法的退化。 为了解决这个问题, 我们提出一个新的图像脱色框架, 与未贴标签的真实数据合作。 首先, 我们开发一个分解的图像脱色网络( DID- Net ), 将特征显示分解成三个组成部分的地图, 即隐性无烟图像、 传输图和全球大气光估计, 尊重烟雾过程的物理模型。 我们的DAD- Net通过逐步整合各种功能来预测三个组成部分的地图, 并通过一个独立的精细化网络来改进每张地图。 然后, 我们使用一个不相干、 趋同、 均匀的中等教师网络( DMT- Net) 来合作一个不固定的图像脱色真实数据, 具体来说, 我们鼓励对每个分解的成分的图像进行粗略的预测和完善, 使学生和教师网络之间保持一致, 在未贴标签的真实数据上出现一致性损失 。 我们用两种状态的定性图像进行对比, 并广泛展示数据 。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
5+阅读 · 2015年3月1日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员