Pre-training with self-supervised models, such as Hidden-unit BERT (HuBERT) and wav2vec 2.0, has brought significant improvements in automatic speech recognition (ASR). However, these models usually require an expensive computational cost to achieve outstanding performance, slowing down the inference speed. To improve the model efficiency, we introduce an early exit scheme for ASR, namely HuBERT-EE, that allows the model to stop the inference dynamically. In HuBERT-EE, multiple early exit branches are added at the intermediate layers. When the intermediate prediction of the early exit branch is confident, the model stops the inference, and the corresponding result can be returned early. We investigate the proper early exiting criterion and fine-tuning strategy to effectively perform early exiting. Experimental results on the LibriSpeech show that HuBERT-EE can accelerate the inference of the HuBERT while simultaneously balancing the trade-off between the performance and the latency.
翻译:暂无翻译