Neural networks are increasingly evolving towards training large models with big data, a method that has demonstrated superior performance across many tasks. However, this approach introduces an urgent problem: current deep learning models are predominantly serial, meaning that as the number of network layers increases, so do the training and inference times. This is unacceptable if deep learning is to continue advancing. Therefore, this paper proposes a deep learning parallelization strategy based on the Universal Approximation Theorem (UAT). From this foundation, we designed a parallel network called Para-Former to test our theory. Unlike traditional serial models, the inference time of Para-Former does not increase with the number of layers, significantly accelerating the inference speed of multi-layer networks. Experimental results validate the effectiveness of this network.
翻译:暂无翻译