Accurate and robust abdominal multi-organ segmentation from CT imaging of different modalities is a challenging task due to complex inter- and intra-organ shape and appearance variations among abdominal organs. In this paper, we propose a probabilistic multi-organ segmentation network with hierarchical spatial-wise feature modulation to capture flexible organ semantic variants and inject the learnt variants into different scales of feature maps for guiding segmentation. More specifically, we design an input decomposition module via a conditional variational auto-encoder to learn organ-specific distributions on the low dimensional latent space and model richer organ semantic variations that is conditioned on input images.Then by integrating these learned variations into the V-Net decoder hierarchically via spatial feature transformation, which has the ability to convert the variations into conditional Affine transformation parameters for spatial-wise feature maps modulating and guiding the fine-scale segmentation. The proposed method is trained on the publicly available AbdomenCT-1K dataset and evaluated on two other open datasets, i.e., 100 challenging/pathological testing patient cases from AbdomenCT-1K fully-supervised abdominal organ segmentation benchmark and 90 cases from TCIA+&BTCV dataset. Highly competitive or superior quantitative segmentation results have been achieved using these datasets for four abdominal organs of liver, kidney, spleen and pancreas with reported Dice scores improved by 7.3% for kidneys and 9.7% for pancreas, while being ~7 times faster than two strong baseline segmentation methods(nnUNet and CoTr).
翻译:由不同模式的CT成像产生的精密和稳健的多器官分解是一个艰巨的任务,因为机体间和机体内部形状复杂,而且腹部器官的外观变异。在本文中,我们提议建立一个多机分解网络,采用空间空间特征变异的等级,以捕捉灵活的器官语义变异体,并将所学到的变异体注入不同的地貌地图中,用于指导分解。更具体地说,我们设计了一个输入分解模块,通过一个有条件的变异自动分解器(自动分解器)来学习低维基潜空和以输入图像为条件的更富型器官分解变异体的器官特异性分布。然后,通过空间特征变异性变异性将这些学变异性纳入V-Net脱异体的等级,从而能够将这些变异异体转化为成有条件的Affine变体变体转换参数,用于调整和引导细度分解。这些拟议方法在公开提供的AbdomemenCT-K数据集上,通过两个坚硬的直径直径直径直径直径直径直径直径直径直径直径直径直径直径对等的直径直径对等的直径对等的直径对等数据分解数据分解分解分解结果进行了评估。