Multifidelity methods are widely used for estimating quantities of interest (QoI) in computational science by employing numerical simulations of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information, e.g., scalar statistics, about the QoI. Further quantification of uncertainty, e.g., for risk assessment, failure probabilities, or confidence intervals, requires estimation of the full distributions. In this paper, we generalize the ideas in [Xu et al., SIAM J. Sci. Comput. 44.1 (2022), A150-A175] to develop a multifidelity method that approximates the full distribution of scalar-valued QoI. The main advantage of our approach compared to alternative methods is that we require no particular relationships among the high and lower-fidelity models (e.g. model hierarchy), and we do not assume any knowledge of model statistics including correlations and other cross-model statistics before the procedure starts. Under suitable assumptions in the framework above, we achieve provable 1-Wasserstein metric convergence of an algorithmically constructed distributional emulator via an exploration-exploitation strategy. We also prove that crucial policy actions taken by our algorithm are budget-asymptotically optimal. Numerical experiments are provided to support our theoretical analysis.
翻译:在计算科学中,人们广泛使用多种信息方法(QoI)来估计对计算科学的兴趣数量,方法是对不同成本和理解进行数字模拟(2022年)、A150-A1755。许多方法大致是数字价值统计,仅代表有限信息,例如关于QoI的卡路里统计。 进一步量化不确定性,例如风险评估、失败概率或信任间隔,需要估计整个分布。在本文件中,我们综合了[Xu等人、SIAM J. Sci. Coput. 44.1 (2022年)、A150-A175]中的想法,以制定多种价值统计方法,该方法代表的只是部分数量价值有限的信息,例如关于QoI的卡路里统计。我们的方法相对于替代方法的主要优点是,我们不需要高和低度纤维模型(例如模型等级)之间的任何特殊关系,而且我们并不假定在程序开始之前对模型统计数据,包括相关性和其他跨模范统计数据有任何了解。根据上述框架的适当假设,我们实现了1-Wasserstein的衡量标准标准性方法的趋同我们通过预算分析进行最关键的分析的逻辑分析,因此,我们通过进行最精确的逻辑分析,也证明我们进行最佳的逻辑分析。