Decision-making under uncertainty is hugely important for any decisions sensitive to perturbations in observed data. One method of incorporating uncertainty into making optimal decisions is through robust optimization, which minimizes the worst-case scenario over some uncertainty set. We explore Mahalanobis distance as a novel function for multi-target regression and the construction of joint prediction regions. We also connect conformal prediction regions to robust optimization, providing finite sample valid and conservative uncertainty sets, aptly named conformal uncertainty sets. We compare the coverage and efficiency of the conformal prediction regions generated with Mahalanobis distance to other conformal prediction regions. We also construct a small robust optimization example to compare conformal uncertainty sets to those constructed under the assumption of normality.


翻译:将不确定性纳入最佳决策的方法之一是进行稳健优化,最大限度地减少某些不确定情况中最坏的情景。我们探索马哈拉诺比斯距离,作为多目标回归和联合预测区域建设的新功能。我们还将符合要求的预测区域与稳健优化联系起来,提供有限样本、有效保守的不确定数据组,适当命名为一致的不确定数据组。我们将与马哈拉诺比斯距离产生的符合要求的预测区域的覆盖面和效率与其他符合要求的预测区域进行比较。我们还建立一个小的稳健优化范例,将符合要求的不确定数据组与其他假设正常情况下建立的预测区域进行比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
令人心动的offer之微软苏州篇
微软招聘
4+阅读 · 2020年11月27日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
已删除
将门创投
3+阅读 · 2018年8月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月20日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
令人心动的offer之微软苏州篇
微软招聘
4+阅读 · 2020年11月27日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
已删除
将门创投
3+阅读 · 2018年8月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员