Decision-making under uncertainty is hugely important for any decisions sensitive to perturbations in observed data. One method of incorporating uncertainty into making optimal decisions is through robust optimization, which minimizes the worst-case scenario over some uncertainty set. We explore Mahalanobis distance as a novel function for multi-target regression and the construction of joint prediction regions. We also connect conformal prediction regions to robust optimization, providing finite sample valid and conservative uncertainty sets, aptly named conformal uncertainty sets. We compare the coverage and efficiency of the conformal prediction regions generated with Mahalanobis distance to other conformal prediction regions. We also construct a small robust optimization example to compare conformal uncertainty sets to those constructed under the assumption of normality.
翻译:将不确定性纳入最佳决策的方法之一是进行稳健优化,最大限度地减少某些不确定情况中最坏的情景。我们探索马哈拉诺比斯距离,作为多目标回归和联合预测区域建设的新功能。我们还将符合要求的预测区域与稳健优化联系起来,提供有限样本、有效保守的不确定数据组,适当命名为一致的不确定数据组。我们将与马哈拉诺比斯距离产生的符合要求的预测区域的覆盖面和效率与其他符合要求的预测区域进行比较。我们还建立一个小的稳健优化范例,将符合要求的不确定数据组与其他假设正常情况下建立的预测区域进行比较。