Heavy-tailed error distributions and predictors with anomalous values are ubiquitous in high-dimensional regression problems and can seriously jeopardize the validity of statistical analyses if not properly addressed. For more reliable estimation under these adverse conditions, we propose a new robust regularized estimator for simultaneous variable selection and coefficient estimation. This estimator, called adaptive PENSE, possesses the oracle property without prior knowledge of the scale of the residuals and without any moment conditions on the error distribution. The proposed estimator gives reliable results even under very heavy-tailed error distributions and aberrant contamination in the predictors or residuals. Importantly, even in these challenging settings variable selection by adaptive PENSE remains stable. Numerical studies on simulated and real data sets highlight superior finite-sample performance in a vast range of settings compared to other robust regularized estimators in the case of contaminated samples and competitiveness compared to classical regularized estimators in clean samples.


翻译:高维回归问题中普遍存在重尾误差分布和异常值预测,如果得不到妥善处理,则会严重危及统计分析的有效性。为了在这些不利条件下进行更可靠的估计,我们提议为同时进行变量选择和系数估计建立一个新的稳健的固定估计值。这个称为适应性PENSE的估测器,在未事先了解残留物的规模和没有发生错误分布的任何时间条件的情况下拥有甲骨文属性。提议的估测器提供了可靠的结果,即使在预测器或残余物中非常严重尾端错误分布和异常污染的情况下也是如此。重要的是,即使在这些具有挑战性的环境下,适应性PENSE选择的变量也保持稳定。关于模拟和实际数据集的数值研究显示,在广泛的环境中,相对于其他稳健的受污染样品的定序估计值和与清洁样品中典型的定序估测器相比,受污染样品和竞争力都高于其他稳健的定值估计值。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员