Bayesian Networks have been widely used in the last decades in many fields, to describe statistical dependencies among random variables. In general, learning the structure of such models is a problem with considerable theoretical interest that poses many challenges. On the one hand, it is a well-known NP-complete problem, practically hardened by the huge search space of possible solutions. On the other hand, the phenomenon of I-equivalence, i.e., different graphical structures underpinning the same set of statistical dependencies, may lead to multimodal fitness landscapes further hindering maximum likelihood approaches to solve the task. In particular, we exploit the NSGA-II multi-objective optimization procedure in order to explicitly account for both the likelihood of a solution and the number of selected arcs, by setting these as the two objective functions of the method. The aim of this work is to investigate the behavior of NSGA-II and analyse the quality of its solutions. We thus thoroughly examined the optimization results obtained on a wide set of simulated data, by considering both the goodness of the inferred solutions in terms of the objective functions values achieved, and by comparing the retrieved structures with the ground truth, i.e., the networks used to generate the target data. Our results show that NSGA-II can converge to solutions characterized by better likelihood and less arcs than classic approaches, although paradoxically characterized in many cases by a lower similarity with the target network.


翻译:在过去几十年中,在许多领域广泛使用贝叶斯网络,以描述随机变量之间的统计依赖性。一般而言,学习这类模型的结构是一个具有相当的理论兴趣的问题,它带来了许多挑战。一方面,这是一个众所周知的NP完整的问题,几乎因寻找大量可能的解决办法而更加强硬。另一方面,I-equality现象,即同一一组统计依赖性所依赖的不同图形结构,可能导致多式健身环境进一步妨碍以尽可能大的可能性方法来完成任务。我们利用NSGA-II多目标优化程序,明确说明解决办法的可能性和选定弧的数目,将这些问题确定为方法的两个客观功能。这项工作的目的是调查国家统计GA-II的行为,分析其解决办法的质量。因此,我们通过考虑在所实现的客观功能价值方面所推断的解决办法的优点,并通过将回收的系统结构与我们所使用的目标一致程度较低的数据相比,通过标准化的网络比常规数据更精确地显示一个典型的真相。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
65+阅读 · 2021年6月18日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
6+阅读 · 2020年10月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
65+阅读 · 2021年6月18日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
6+阅读 · 2020年10月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员