In this paper we develop a plane wave type method for discretization of homogeneous Helmholtz equations with variable wave numbers. In the proposed method, local basis functions (on each element) are constructed by the geometric optics ansatz such that they approximately satisfy a homogeneous Helmholtz equation without boundary condition. More precisely, each basis function is expressed as the product of an exponential plane wave function and a polynomial function, where the phase function in the exponential function approximately satisfies the eikonal equation and the polynomial factor is recursively determined by transport equations associated with the considered Helmholtz equation. We prove that the resulting plane wave spaces have high order $h$-approximations as the standard plane wave spaces (which are available only to the case with constant wave number). We apply the proposed plane wave spaces to the discretization of nonhomogeneous Helmholtz equations with variable wave numbers and establish the corresponding error estimates of their finite element solutions. We report some numerical results to illustrate the efficiency of the proposed method.
翻译:在本文中,我们开发了一种平面波类型方法,以不同波数分解同质赫姆霍尔茨方程式。在拟议方法中,(每个元素的)当地基函数(在每元素上)是用几何光学 ansatz 构造的,这样它们可以不附带边界条件地大致满足同质赫姆霍尔茨方程式。更准确地说,每个基函数表现为指数性平面波函数和多元函数的产物,指数性函数的相位函数大致满足eikonal方程式,多元分子因子系数由与考虑的赫姆霍茨方程式相关的运输方程式递归决定。我们证明,由此产生的平面波空间作为标准平面波空间(只有具有恒定波号的案例才能使用)具有高度的相近值。我们用拟议的平面波空间来表示非荷源性赫姆尔霍尔茨方程式的离散状态,并用变量波数确定其定质元素解决方案的相应误差估计值。我们报告一些数字结果,以说明拟议方法的效率。