The generalization error of deep learning models for medical image analysis often decreases on images collected with different devices for data acquisition, device settings, or patient population. A better understanding of the generalization capacity on new images is crucial for clinicians' trustworthiness in deep learning. Although significant research efforts have been recently directed toward establishing generalization bounds and complexity measures, still, there is often a significant discrepancy between the predicted and actual generalization performance. As well, related large empirical studies have been primarily based on validation with general-purpose image datasets. This paper presents an empirical study that investigates the correlation between 25 complexity measures and the generalization abilities of supervised deep learning classifiers for breast ultrasound images. The results indicate that PAC-Bayes flatness-based and path norm-based measures produce the most consistent explanation for the combination of models and data. We also investigate the use of multi-task classification and segmentation approach for breast images, and report that such learning approach acts as an implicit regularizer and is conducive toward improved generalization.


翻译:医学图像分析的深层学习模型的概括错误往往在收集数据、装置设置或病人人数的不同装置所收集的图像中减少。更好地了解新图像的概括能力对于临床医生深层学习的可信度至关重要。虽然最近进行了大量研究努力,以建立一般化界限和复杂度衡量标准,但预测的和实际的概括性表现之间往往存在重大差异。此外,相关的大型经验研究主要基于对通用图像数据集的验证。本文介绍了一项经验性研究,调查了25项复杂措施与受监督的乳腺癌超声波图像深层学习分类器的一般化能力之间的相互关系。研究结果表明,PAC-Bayes平板和路径规范性衡量措施为模型和数据的组合提供了最一致的解释。我们还调查了对乳房图像使用多任务分类和分解方法的情况,并报告说,这种学习方法是一种隐含的定序器,有利于改进一般化。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
32+阅读 · 2021年3月8日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员