Forecasting future events over extended periods, known as long-horizon prediction, is a fundamental task in various domains, including retail, finance, healthcare, and social networks. Traditional methods, such as Marked Temporal Point Processes (MTPP), typically use autoregressive models to predict multiple future events. However, these models frequently encounter issues such as converging to constant or repetitive outputs, which significantly limits their effectiveness and applicability. To overcome these limitations, we propose DeTPP (Detection-based Temporal Point Processes), a novel approach inspired by object detection methods from computer vision. DeTPP utilizes a novel matching-based loss function that selectively focuses on reliably predictable events, enhancing both training robustness and inference diversity. Our method sets a new state-of-the-art in long-horizon event prediction, significantly outperforming existing MTPP and next-K approaches. The implementation of DeTPP is publicly available on GitHub.
翻译:暂无翻译