Background and Objective: Diabetes presents a significant challenge to healthcare due to the negative impact of poor blood sugar control on health and associated complications. Computer simulation platforms, notably exemplified by the UVA/Padova Type 1 Diabetes simulator, has emerged as a promising tool for advancing diabetes treatments by simulating patient responses in a virtual environment. The UVA Virtual Lab (UVLab) is a new simulation platform to mimic the metabolic behavior of people with Type 2 diabetes (T2D) with a large population of 6062 virtual subjects. Methods: The work introduces the Distribution-Based Population Selection (DSPS) method, a systematic approach to identifying virtual subsets that mimic the clinical behavior observed in real trials. The method transforms the sub-population selection task into a Linear Programing problem, enabling the identification of the largest representative virtual cohort. This selection process centers on key clinical outcomes in diabetes research, such as HbA1c and Fasting plasma Glucose (FPG), ensuring that the statistical properties (moments) of the selected virtual sub-population closely resemble those observed in real-word clinical trial. Results: DSPS method was applied to the insulin degludec (IDeg) arm of a phase 3 clinical trial. This method was used to select a sub-population of virtual subjects that closely mirrored the clinical trial data across multiple key metrics, including glycemic efficacy, insulin dosages, and cumulative hypoglycemia events over a 26-week period. Conclusion: The DSPS algorithm is able to select virtual sub-population within UVLab to reproduce and predict the outcomes of a clinical trial. This statistical method can bridge the gap between large population simulation platforms and previously conducted clinical trials.
翻译:暂无翻译