Graphs have more expressive power and are widely researched in various search demand scenarios, compared with traditional relational and XML models. Today, many graph search services have been deployed on a third-party server, which can alleviate users from the burdens of maintaining large-scale graphs and huge computation costs. Nevertheless, outsourcing graph search services to the third-party server may invade users' privacy. PeGraph was recently proposed to achieve the encrypted search over the social graph. The main idea of PeGraph is to maintain two data structures XSet and TSet motivated by the OXT technology to support encrypted conductive search. However, PeGraph still has some limitations. First, PeGraph suffers from high communication and computation costs in search operations. Second, PeGraph cannot support encrypted search over dynamic graphs. In this paper, we propose an SGX-based efficient and confidentiality-preserving graph search scheme SecGraph that can support insertion and deletion operations. We first design a new proxy-token generation method to reduce the communication cost. Then, we design an LDCF-encoded XSet based on the Logarithmic Dynamic Cuckoo Filter to reduce the computation cost. Finally, we design a new dynamic version of TSet named Twin-TSet to enable encrypted search over dynamic graphs. We have demonstrated the confidentiality preservation property of SecGraph through rigorous security analysis. Experiment results show that SecGraph yields up to 208x improvement in search time compared with PeGraph and the communication cost in PeGraph is up to 540x larger than that in SecGraph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员