Deep learning models tend not to be out-of-distribution robust primarily due to their reliance on spurious features to solve the task. Counterfactual data augmentations provide a general way of (approximately) achieving representations that are counterfactual-invariant to spurious features, a requirement for out-of-distribution (OOD) robustness. In this work, we show that counterfactual data augmentations may not achieve the desired counterfactual-invariance if the augmentation is performed by a {\em context-guessing machine}, an abstract machine that guesses the most-likely context of a given input. We theoretically analyze the invariance imposed by such counterfactual data augmentations and describe an exemplar NLP task where counterfactual data augmentation by a context-guessing machine does not lead to robust OOD classifiers.
翻译:深层学习模型一般不会失去分配能力, 主要是因为它们依赖虚假的特性来完成任务。 反事实数据增强提供了一种一般的表达方式( 大约), 以达到与虚假特性相对的反事实变异的表达方式, 这是分配( OOOD) 的稳健性要求 。 在这项工作中, 我们显示, 反事实数据增强可能无法达到预期的反事实变异, 如果增强由 {em- consublicesing machine} 完成, 这是一种抽象的机器, 用来猜测给定输入的最相似的背景 。 我们理论上分析了这种反事实数据增强所强加的变异性, 并描述了一个缩略式 NLP 任务, 即通过背景猜想机器反事实数据增强不会导致稳健的 OOD 分类 。