We provide a thorough treatment of hyperparameter optimisation for three data descriptors with a good track-record in the literature: Support Vector Machine (SVM), Nearest Neighbour Distance (NND) and Average Localised Proximity (ALP). The hyperparameters of SVM have to be optimised through cross-validation, while NND and ALP allow the reuse of a single nearest-neighbour query and an efficient form of leave-one-out validation. We experimentally evaluate the effect of hyperparameter optimisation with 246 classification problems drawn from 50 datasets. From a selection of optimisation algorithms, the recent Malherbe-Powell proposal optimises the hyperparameters of all three data descriptors most efficiently. We calculate the increase in test AUROC and the amount of overfitting as a function of the number of hyperparameter evaluations. After 50 evaluations, ALP and SVM both significantly outperform NND. The performance of ALP and SVM is comparable, but ALP can be optimised more efficiently, while a choice between ALP and SVM based on validation AUROC gives the best overall result. This distils the many variables of one-class classification with hyperparameter optimisation down to a clear choice with a known trade-off, allowing practitioners to make informed decisions.


翻译:我们为文献中记录良好轨迹的3个数据描述器提供超光度优化的彻底处理:支持矢量机(SVM)、近邻距离(NND)和平均本地化近距离(ALP)。 SVM的超光度参数必须通过交叉校验加以优化,而NND和ALP允许重新使用一个近邻查询和一种有效的请假一次性验证形式。我们试验性地评估超光度优化的效果,从50个数据集中提取了246个分类问题。从选择优化算法的选择中,最近的Malherbe-Powell建议以最有效率的方式将所有3个数据描述器的超光度参数加以优化。我们计算AUROC测试的增加和过度匹配作为超光度评估数量的函数。经过50次评价后,ALP和SVM两者的性能明显超出NND。ALP和SVM的性能是可比的,但ALP可以更高效地加以选择,同时使ALP和SVM的整个贸易分类结果成为最清晰的变量。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
少标签数据学习,54页ppt
专知会员服务
199+阅读 · 2020年5月22日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
One-Class Classification: A Survey
Arxiv
8+阅读 · 2021年1月8日
Arxiv
6+阅读 · 2020年9月29日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
少标签数据学习,54页ppt
专知会员服务
199+阅读 · 2020年5月22日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员