While current methods for interactive Video Object Segmentation (iVOS) rely on scribble-based interactions to generate precise object masks, we propose a Click-based interactive Video Object Segmentation (CiVOS) framework to simplify the required user workload as much as possible. CiVOS builds on de-coupled modules reflecting user interaction and mask propagation. The interaction module converts click-based interactions into an object mask, which is then inferred to the remaining frames by the propagation module. Additional user interactions allow for a refinement of the object mask. The approach is extensively evaluated on the popular interactive~DAVIS dataset, but with an inevitable adaptation of scribble-based interactions with click-based counterparts. We consider several strategies for generating clicks during our evaluation to reflect various user inputs and adjust the DAVIS performance metric to perform a hardware-independent comparison. The presented CiVOS pipeline achieves competitive results, although requiring a lower user workload.


翻译:虽然目前交互式视频对象分割法(iVOS)依靠基于刻字的交互作用来生成精确的物体面罩,但我们提议了一个基于点击的互动式视频对象分割法(CiVOS)框架,以尽可能简化所需的用户工作量。CiVOS建立在反映用户互动和遮罩传播的分离模块上。互动模块将基于点击的交互作用转换成一个对象面罩,然后通过传播模块将其推断为剩余框架。额外的用户互动可以改进对象面罩。该方法在流行的交互式~DAVIS数据集上进行了广泛评价,但不可避免地调整了与基于点击的对应方的基于刻字的交互作用。我们考虑了在评估期间生成点击数项战略,以反映各种用户的投入,调整DAVIS的性能衡量标准,以进行硬件独立的比较。推出的CiVOS管道取得了竞争性结果,尽管需要较低的用户工作量。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年3月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员