The traditional homography estimation pipeline consists of four main steps: feature detection, feature matching, outlier removal and transformation estimation. Recent deep learning models intend to address the homography estimation problem using a single convolutional network. While these models are trained in an end-to-end fashion to simplify the homography estimation problem, they lack the feature matching step and/or the outlier removal step, which are important steps in the traditional homography estimation pipeline. In this paper, we attempt to build a deep learning model that mimics all four steps in the traditional homography estimation pipeline. In particular, the feature matching step is implemented using the cost volume technique. To remove outliers in the cost volume, we treat this outlier removal problem as a denoising problem and propose a novel self-supervised loss to solve the problem. Extensive experiments on synthetic and real datasets demonstrate that the proposed model outperforms existing deep learning models.
翻译:传统的同系物估计管道由四大步骤组成:特征检测、特征匹配、异常清除和变异估计。最近的深层次学习模型打算使用单一的进化网络解决同系物估计问题。这些模型经过端至端培训,以简化同系物估计问题,但它们缺乏特征匹配步骤和/或异常清除步骤,而这些步骤是传统同系物估计管道中的重要步骤。在本文中,我们试图建立一个深层次学习模型,以模拟传统同系物估计管道中所有四个步骤。特别是,利用成本量技术来实施特征匹配步骤。要消除成本量中的异端,我们将这一超端清除问题视为一种分解问题,并提出新的自我监督损失以解决问题。关于合成和真实数据集的广泛实验表明,拟议的模型优于现有的深层学习模型。