We present two versatile methods to generally enhance self-supervised monocular depth estimation (MDE) models. The high generalizability of our methods is achieved by solving the fundamental and ubiquitous problems in photometric loss function. In particular, from the perspective of spatial frequency, we first propose Ambiguity-Masking to suppress the incorrect supervision under photometric loss at specific object boundaries, the cause of which could be traced to pixel-level ambiguity. Second, we present a novel frequency-adaptive Gaussian low-pass filter, designed to robustify the photometric loss in high-frequency regions. We are the first to propose blurring images to improve depth estimators with an interpretable analysis. Both modules are lightweight, adding no parameters and no need to manually change the network structures. Experiments show that our methods provide performance boosts to a large number of existing models, including those who claimed state-of-the-art, while introducing no extra inference computation at all.
翻译:我们提出了两种全面加强自我监督单眼深度估计(MDE)模型的多功能方法。我们的方法的高度通用性是通过解决光度损失功能中基本和普遍的问题来实现的。特别是从空间频率的角度来看,我们首先提议安抚-模拟,以抑制在特定物体边界的光度损失下对不正确的监督,其原因可以追溯到像素级的模糊性。第二,我们提出了一个新颖的频率适应性高巴低通道过滤器,旨在巩固高频区域的光度损失。我们首先提出模糊图像,用可解释的分析改进深度估计仪。两个模块都是轻量的,没有增加参数,不需要手动改变网络结构。实验表明,我们的方法为大量现有模型提供了性能增强力,包括那些声称拥有最新技术的模型,而没有引入任何额外的推理计算。