Autocovariance of the error term in a time series model plays a key role in the estimation and inference for the model that it belongs to. Typically, some arbitrary parametric structure is assumed upon the error to simplify the estimation, which inevitably introduces potential model-misspecification. We thus conduct nonparametric estimation of it. To avoid the difficult bandwidth selection issue under the traditional nonparametric truncation approach, this paper conducts the Bayesian estimation of its spectral density in a frequency domain. To this end, we consider two cases: fixed error variance and time-varying one. Each approach is taken to estimate the spectral density of the autocovariance and the model parameters. The methodology is applied to exchange rate forecasting and proves to compete favorably against some benchmark models, including the random walk without drift.
翻译:时间序列模型中错误术语的自动变换在估计和推论属于该模型的模型中起着关键作用。 通常, 某些任意的参数结构是在简化估算错误后假设的, 从而不可避免地引入潜在的模型偏差。 因此, 我们对其进行非参数性的估计。 为了避免传统的非参数性脱轨方法下的困难带宽选择问题, 本文在一个频率域内进行巴伊西亚光谱密度估计。 为此, 我们考虑两种情况: 固定误差差异和时间变化。 每种方法都用于估计自动变量和模型参数的光谱密度。 这种方法用于汇率预测, 并证明与一些基准模型( 包括无漂移的随机行走) 竞争有利。