Denoising Diffusion Models (DDMs) have become the leading generative technique for synthesizing high-quality images but are often constrained by their UNet-based architectures that impose certain limitations. In particular, the considerable size of often hundreds of millions of parameters makes them impractical when hardware resources are limited. However, even with powerful hardware, processing images in the gigapixel range is difficult. This is especially true in fields such as microscopy or satellite imaging, where such challenges arise from the limitation to a predefined generative size and the inefficient scaling to larger images. We present two variations of Neural Cellular Automata (NCA)-based DDM methods to address these challenges and jumpstart NCA-based DDMs: Diff-NCA and FourierDiff-NCA. Diff-NCA performs diffusion by using only local features of the underlying distribution, making it suitable for applications where local features are critical. To communicate global knowledge in image space, naive NCA setups require timesteps that increase with the image scale. We solve this bottleneck of current NCA architectures by introducing FourierDiff-NCA, which advances Diff-NCA by adding a Fourier-based diffusion process and combines the frequency-organized Fourier space with the image space. By initiating diffusion in the Fourier domain and finalizing it in the image space, FourierDiff-NCA accelerates global communication. We validate our techniques by using Diff-NCA (208k parameters) to generate high-resolution digital pathology scans at 576x576 resolution and FourierDiff-NCA (887k parameters) to synthesize CelebA images at 64x64, outperforming VNCA and five times bigger UNet-based DDMs. In addition, we demonstrate FourierDiff-NCA's capabilities in super-resolution, OOD image synthesis, and inpainting without additional training.


翻译:暂无翻译

0
下载
关闭预览

相关内容

神经计算与应用(Neural Computing & Applications)是一份国际期刊,发表神经计算和相关技术(如遗传算法、模糊逻辑和神经模糊系统)的实际应用领域的原始研究和其他信息。 官网地址:http://dblp.uni-trier.de/db/journals/nca/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员