The canonical technique for nonlinear modeling of spatial/point-referenced data is known as kriging in geostatistics, and as Gaussian Process (GP) regression for surrogate modeling and statistical learning. This article reviews many similarities shared between kriging and GPs, but also highlights some important differences. One is that GPs impose a process that can be used to automate kernel/variogram inference, thus removing the human from the loop. The GP framework also suggests a probabilistically valid means of scaling to handle a large corpus of training data, i.e., an alternative to so-called ordinary kriging. Finally, recent GP implementations are tailored to make the most of modern computing architectures such as multi-core workstations and multi-node supercomputers. We argue that such distinctions are important even in classically geostatistical settings. To back that up, we present out-of-sample validation exercises using two, real, large-scale borehole data sets involved in the mining of gold and other minerals. We pit classic kriging against the modern GPs in several variations and conclude that the latter can more economical (fewer human and compute resources), more accurate and offer better uncertainty quantification. We go on to show how the fully generative modeling apparatus provided by GPs can gracefully accommodate left-censoring of small measurements, as commonly occurs in mining data and other borehole assays.


翻译:用于空间/点参照数据非线性建模的卡通技术被称为地理统计学中的Kriging, 也称为Gausian Process(GP)回归, 用于代理模型和统计学学习。 文章回顾了Kriging和GP之间有许多相似之处, 但也突出了一些重要的差别。 其中之一是GP施加了一个可用于自动内核/变量推断的过程, 从而将人类从环绕中清除出来。 GP框架还提出了一种非常可靠的扩大规模的方法, 用于处理大量的培训数据, 即取代所谓的普通的Kriging。 最后, 最近GP的实施是定制的, 使大多数现代计算结构, 如多核心工作站和多点超级计算机之间具有相似性, 但也突出了一些重要的差别。 我们认为, 即使是在传统的地理统计学环境中, 这样的区分也很重要。 反过来说, 我们用两种真实的大型钻孔数据组, 来容纳大量空洞数据组, 来处理大型金矿和其他矿物开采中的大型培训数据组。 最后,我们用一些典型的精度和精度数据组, 来更精确地展示更精确的精度数据,, 以更精确地展示更精确地显示人类的精度的精度, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月14日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员