Mobile app repositories have been largely used in scientific research as large-scale, highly adaptive crowdsourced information systems. These software platforms can potentially nourish multiple software and requirements engineering tasks based on user reviews and other natural language documents, including feedback analysis, recommender systems and topic modelling. Consequently, researchers often endeavour to overcome domain-specific challenges, including integration of heterogeneous data sources, large-scale data collection and adaptation of a publicly available data set for a given research scenario. In this paper, we present MApp-KG, a combination of software resources and data artefacts in the field of mobile app repositories to support extended knowledge generation tasks. Our contribution aims to provide a framework for automatically constructing a knowledge graph modelling a domain-specific catalogue of mobile apps. Complementarily, we distribute MApp-KG in a public triplestore and as a static data snapshot, which may be promptly employed for future research and reproduction of our findings.
翻译:暂无翻译