Despite the promising future of autonomous robots, several key issues currently remain that can lead to compromised performance and safety. One such issue is latency, where we find that even the latest embedded platforms from NVIDIA fail to execute intelligence tasks (e.g., object detection) of autonomous vehicles in a real-time fashion. One remedy to this problem is the promising paradigm of edge computing. Through collaboration with our industry partner, we identify key prohibitive limitations of the current edge mindset: (1) servers are not distributed enough and thus, are not close enough to vehicles, (2) current proposed edge solutions do not provide substantially better performance and extra information specific to autonomous vehicles to warrant their cost to the user, and (3) the state-of-the-art solutions are not compatible with popular frameworks used in autonomous systems, particularly the Robot Operating System (ROS). To remedy these issues, we provide Genie, an encapsulation technique that can enable transparent caching in ROS in a non-intrusive way (i.e., without modifying the source code), can build the cache in a distributed manner (in contrast to traditional central caching methods), and can construct a collective three-dimensional object map to provide substantially better latency (even on low-power edge servers) and higher quality data to all vehicles in a certain locality. We fully implement our design on state-of-the-art industry-adopted embedded and edge platforms, using the prominent autonomous driving software Autoware, and find that Genie can enhance the latency of Autoware Vision Detector by 82% on average, enable object reusability 31% of the time on average and as much as 67% for the incoming requests, and boost the confidence in its object map considerably over time.
翻译:暂无翻译