Data augmentation is a widely adopted technique for avoiding overfitting when training deep neural networks. However, this approach requires domain-specific knowledge and is often limited to a fixed set of hard-coded transformations. Recently, several works proposed to use generative models for generating semantically meaningful perturbations to train a classifier. However, because accurate encoding and decoding are critical, these methods, which use architectures that approximate the latent-variable inference, remained limited to pilot studies on small datasets. Exploiting the exactly reversible encoder-decoder structure of normalizing flows, we perform on-manifold perturbations in the latent space to define fully unsupervised data augmentations. We demonstrate that such perturbations match the performance of advanced data augmentation techniques -- reaching 96.6% test accuracy for CIFAR-10 using ResNet-18 and outperform existing methods, particularly in low data regimes -- yielding 10--25% relative improvement of test accuracy from classical training. We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective, yielding the first test accuracy improvement results on real-world datasets -- CIFAR-10/100 -- via latent-space perturbations.
翻译:增强数据是广泛采用的一种技术,用于在培训深神经网络时避免过度使用。然而,这一方法需要具体领域的知识,而且往往限于固定的硬编码转换。最近,一些工程提议使用基因模型来产生具有地震意义的扰动,以训练一个分类员。然而,由于准确的编码和解码至关重要,这些方法使用接近潜在可变推断值的结构,仍然局限于对小型数据集进行试点研究。探索流动正常化的完全可逆的编码器脱形结构,我们在潜在空间进行自控渗透,以定义完全不受监督的数据增强。我们证明,这种扰动与先进的数据增强技术的性能相匹配 -- -- 使用ResNet-18为CIFAR-10达到96.6%的测试精度,并超越了现有方法,特别是在低数据制度下 -- -- 使古典培训的测试精度提高了10-25%。我们发现,在整个培训过程中,我们适应分解器的潜伏对立器的对立反向扰动结构结构结构结构进行最有效,通过100年期的深度数据测试结果 -- -- -- 首次产生对空间进行真实的精确度测试。