Data augmentation is a widely adopted technique for avoiding overfitting when training deep neural networks. However, this approach requires domain-specific knowledge and is often limited to a fixed set of hard-coded transformations. Recently, several works proposed to use generative models for generating semantically meaningful perturbations to train a classifier. However, because accurate encoding and decoding are critical, these methods, which use architectures that approximate the latent-variable inference, remained limited to pilot studies on small datasets. Exploiting the exactly reversible encoder-decoder structure of normalizing flows, we perform on-manifold perturbations in the latent space to define fully unsupervised data augmentations. We demonstrate that such perturbations match the performance of advanced data augmentation techniques -- reaching 96.6% test accuracy for CIFAR-10 using ResNet-18 and outperform existing methods, particularly in low data regimes -- yielding 10--25% relative improvement of test accuracy from classical training. We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective, yielding the first test accuracy improvement results on real-world datasets -- CIFAR-10/100 -- via latent-space perturbations.


翻译:增强数据是广泛采用的一种技术,用于在培训深神经网络时避免过度使用。然而,这一方法需要具体领域的知识,而且往往限于固定的硬编码转换。最近,一些工程提议使用基因模型来产生具有地震意义的扰动,以训练一个分类员。然而,由于准确的编码和解码至关重要,这些方法使用接近潜在可变推断值的结构,仍然局限于对小型数据集进行试点研究。探索流动正常化的完全可逆的编码器脱形结构,我们在潜在空间进行自控渗透,以定义完全不受监督的数据增强。我们证明,这种扰动与先进的数据增强技术的性能相匹配 -- -- 使用ResNet-18为CIFAR-10达到96.6%的测试精度,并超越了现有方法,特别是在低数据制度下 -- -- 使古典培训的测试精度提高了10-25%。我们发现,在整个培训过程中,我们适应分解器的潜伏对立器的对立反向扰动结构结构结构结构进行最有效,通过100年期的深度数据测试结果 -- -- -- 首次产生对空间进行真实的精确度测试。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
最新《Transformers模型》教程,64页ppt
专知会员服务
279+阅读 · 2020年11月26日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Conditional Batch Normalization 详解
极市平台
4+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月11日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Conditional Batch Normalization 详解
极市平台
4+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员