We propose a novel method for creating adversarial examples. Instead of perturbing pixels, we use an encoder-decoder representation of the input image and perturb intermediate layers in the decoder. This changes the high-level features provided by the generative model. Therefore, our perturbation possesses semantic meaning, such as a longer beak or green tints. We formulate this task as an optimization problem by minimizing the Wasserstein distance between the adversarial and initial images under a misclassification constraint. We employ the projected gradient method with a simple inexact projection. Due to the projection, all iterations are feasible, and our method always generates adversarial images. We perform numerical experiments on the MNIST and ImageNet datasets in both targeted and untargeted settings. We demonstrate that our adversarial images are much less vulnerable to steganographic defence techniques than pixel-based attacks. Moreover, we show that our method modifies key features such as edges and that defence techniques based on adversarial training are vulnerable to our attacks.


翻译:我们建议一种创新的方法来创建对抗性实例。 我们使用一种不触动像素的方法, 而不是在解码器中输入图像和扰动中间层的编码器解码器。 这改变了基因模型所提供的高层次特征。 因此, 我们的扰动具有语义含义, 比如更长的 beak 或绿色的色素。 我们把这个任务描述为一个优化问题, 在错误的分类限制下将对抗性图像和初始图像之间的瓦瑟斯坦距离最小化。 我们使用预测的梯度方法, 使用简单不精确的投影 。 由于投影, 所有迭代都是可行的, 我们的方法总是生成对抗性图像 。 我们在目标和非目标环境中对 MMSIS 和图像网络数据集进行数字实验。 我们证明我们的对抗性图像比像素基攻击更容易受到血清防御技术的影响。 此外, 我们显示我们的方法会改变边缘等关键特征, 并且基于对抗性训练的防御技术很容易受到攻击 。

1
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2021年7月4日
专知会员服务
89+阅读 · 2021年6月29日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年4月4日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2021年7月4日
专知会员服务
89+阅读 · 2021年6月29日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
43+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员