We present a method for conditional sampling for pre-trained normalizing flows when only part of an observation is available. We derive a lower bound to the conditioning variable log-probability using Schur complement properties in the spirit of Gaussian conditional sampling. Our derivation relies on partitioning flow's domain in such a way that the flow restrictions to subdomains remain bijective, which is crucial for the Schur complement application. Simulation from the variational conditional flow then amends to solving an equality constraint. Our contribution is three-fold: a) we provide detailed insights on the choice of variational distributions; b) we discuss how to partition the input space of the flow to preserve bijectivity property; c) we propose a set of methods to optimise the variational distribution. Our numerical results indicate that our sampling method can be successfully applied to invertible residual networks for inference and classification.
翻译:当只有部分观测数据时,我们提出对经过事先训练的正常流进行有条件抽样的方法。我们用高西亚有条件取样的精神,利用舒尔补充特性,对调节可变日志概率进行较低的约束。我们的衍生依靠分割流的域,使对亚域的流量限制仍然是双向的,这对舒尔补充应用至关重要。从变式有条件流模拟后,又修正了解决平等制约。我们的贡献有三重:(a)我们详细了解变式分布的选择;(b)我们讨论如何分配流动的输入空间,以保存双向属性;(c)我们提出一套优化变式分布的方法。我们的数字结果表明,我们的取样方法可以成功地应用于不可忽略的残余网络,以便进行推断和分类。