We study learnability of two important classes of mechanisms, menus of lotteries and two-part tariffs. A menu of lotteries is a list of entries where each entry is a pair consisting of probabilities of allocating each item and a price. Menus of lotteries is an especially important family of randomized mechanisms that are known to achieve revenue beyond any deterministic mechanism. A menu of two-part tariffs, on the other hand, is a pricing scheme (that consists of an up-front fee and a per unit fee) that is commonly used in the real world, e.g., for car or bike sharing services. We study learning high-revenue menus of lotteries and two-part tariffs from buyer valuation data in both distributional settings, where we have access to buyers' valuation samples up-front, and online settings, where buyers arrive one at a time and no distributional assumption is made about their values. Our main contribution is proposing the first online learning algorithms for menus of lotteries and two-part tariffs with strong regret bound guarantees. Furthermore, we provide algorithms with improved running times over prior work for the distributional settings. The key difficulty when deriving learning algorithms for these settings is that the relevant revenue functions have sharp transition boundaries. In stark contrast with the recent literature on learning such unstructured functions, we show that simple discretization-based techniques are sufficient for learning in these settings.
翻译:我们研究的是两大类机制、彩票菜单和两部分关税的可学习性。 彩票菜单是一个条目列表, 其中每个条目都是一对配对, 包括分配每个项目和价格的概率。 彩票菜单是一个特别重要的随机化机制大家庭, 已知在任何确定机制之外获得收入。 两部分关税的菜单是一个定价计划( 由预付收费和每单位收费组成), 在现实世界中普遍使用, 例如汽车或自行车共享服务。 我们研究的是, 在分配环境中学习高收入彩票菜单和买方估值数据中的两部分关税, 在分配环境中, 我们有机会获得买方估值样本, 在任何确定机制之外获得收入。 而另一方面, 两部分关税的菜单菜单是一个定价计划( 由前期收费和每单位收费组成) 。 我们的主要贡献是提出一种价格计划( 包括前期费用) 和两部分关税的在线学习算法 。 此外, 我们提供经过改进的快速运行的彩票菜单菜单和买方估值数据, 在之前的配置中, 快速的排序功能是学习这些相关的序列。 学习这些关键的学习过程 。