We formulate argumentative relation classification (support vs. attack) as a text-plausibility ranking task. To this aim, we propose a simple reconstruction trick which enables us to build minimal pairs of plausible and implausible texts by simulating natural contexts in which two argumentative units are likely or unlikely to appear. We show that this method is competitive with previous work albeit it is considerably simpler. In a recently introduced content-based version of the task, where contextual discourse clues are hidden, the approach offers a performance increase of more than 10% macro F1. With respect to the scarce attack-class, the method achieves a large increase in precision while the incurred loss in recall is small or even nonexistent.
翻译:我们把辩论关系分类(支持与攻击)作为一种文本可替换性排序任务。 为此,我们提出一个简单的重建策略,通过模拟可能出现或不大可能出现两个参数单位的自然环境,使我们能够建立最低限度的可信和不可信的文本配对。我们表明,这种方法与先前的工作具有竞争力,尽管它相当简单。在最近推出的基于内容的任务版本中,背景话语线索被隐藏,该方法的性能增长超过10% 宏观F1。 在稀缺的攻击类方面,该方法实现了大幅提高精确度,而召回的损失则很小,甚至根本不存在。