To solve the text-based question and answering task that requires relational reasoning, it is necessary to memorize a large amount of information and find out the question relevant information from the memory. Most approaches were based on external memory and four components proposed by Memory Network. The distinctive component among them was the way of finding the necessary information and it contributes to the performance. Recently, a simple but powerful neural network module for reasoning called Relation Network (RN) has been introduced. We analyzed RN from the view of Memory Network, and realized that its MLP component is able to reveal the complicate relation between question and object pair. Motivated from it, we introduce which uses MLP to find out relevant information on Memory Network architecture. It shows new state-of-the-art results in jointly trained bAbI-10k story-based question answering tasks and bAbI dialog-based question answering tasks.


翻译:为了解决基于文本的问题和回答需要关联推理的任务,有必要记住大量的信息,并从记忆中找到与问题相关的信息。大多数方法基于外部记忆和记忆网络提出的四个组成部分。它们中的独特部分是寻找必要信息的方式,有助于业绩。最近,引入了一个简单而有力的推理神经网络模块,称为关系网络(RN)。我们从记忆网络的角度分析了RN,并意识到其 MLP组件能够揭示问题与对象之间的复杂关系。我们从中引入了MLP, 利用MLP来查找记忆网络结构的相关信息。它展示了联合培训的bAbI-10k故事问题回答任务和bAbI对话问题回答任务的新的最新结果。

4
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员