Compute-in-memory (CIM) accelerators built upon non-volatile memory (NVM) devices excel in energy efficiency and latency when performing Deep Neural Network (DNN) inference, thanks to their in-situ data processing capability. However, the stochastic nature and intrinsic variations of NVM devices often result in performance degradation in DNN inference. Introducing these non-ideal device behaviors during DNN training enhances robustness, but drawbacks include limited accuracy improvement, reduced prediction confidence, and convergence issues. This arises from a mismatch between the deterministic training and non-deterministic device variations, as such training, though considering variations, relies solely on the model's final output. In this work, we draw inspiration from the control theory and propose a novel training concept: Negative Feedback Training (NFT) leveraging the multi-scale noisy information captured from network. We develop two specific NFT instances, Oriented Variational Forward (OVF) and Intermediate Representation Snapshot (IRS). Extensive experiments show that our methods outperform existing state-of-the-art methods with up to a 46.71% improvement in inference accuracy while reducing epistemic uncertainty, boosting output confidence, and improving convergence probability. Their effectiveness highlights the generality and practicality of our NFT concept in enhancing DNN robustness against device variations.
翻译:暂无翻译