We offer a general approach to modeling longitudinal network data, including exponential random graph models (ERGMs), that vary according to certain discrete-time Markov chains. We connect conditional and Markovian exponential families, permutation-uniform Markov chains, various (temporal) ERGMs, and statistical considerations such as dyadic independence and exchangeability. By removing models' temporal dependence but not interpretability, our approach simplifies analysis of some network and autoregressive models from the literature, including closed-form expressions for maximum likelihood estimators. We also introduce "exponential random $t$-multigraph models", motivated by our result on replacing $t$ observations of permutation-uniform Markov chains of graphs with single observations of corresponding multigraphs.


翻译:我们为纵向网络数据建模提供了一种通用方法,包括指数随机图模型(ERGMs),这些数据因某些离散时间的Markov链而异。我们连接了有条件的和Markovian的指数式家庭、固定的-统一的Markov链、各种(时间上的)ERGMs,以及诸如三角独立和可交换性等统计考虑因素。通过去除模型的时间依赖性而非可解释性,我们的方法简化了从文献中对某些网络和自动递减模型的分析,包括最大概率估计器的闭式表达式。我们还引入了“特异随机的美元-多位模型 ”, 其动机是用相应的多面体的单一观测取代对变异式-单一的Markov 图表链的美元观测结果。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
19+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月8日
Curved Markov Chain Monte Carlo for Network Learning
Arxiv
0+阅读 · 2021年10月7日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员