We offer a general approach to modeling longitudinal network data, including exponential random graph models (ERGMs), that vary according to certain discrete-time Markov chains. We connect conditional and Markovian exponential families, permutation-uniform Markov chains, various (temporal) ERGMs, and statistical considerations such as dyadic independence and exchangeability. By removing models' temporal dependence but not interpretability, our approach simplifies analysis of some network and autoregressive models from the literature, including closed-form expressions for maximum likelihood estimators. We also introduce "exponential random $t$-multigraph models", motivated by our result on replacing $t$ observations of permutation-uniform Markov chains of graphs with single observations of corresponding multigraphs.
翻译:我们为纵向网络数据建模提供了一种通用方法,包括指数随机图模型(ERGMs),这些数据因某些离散时间的Markov链而异。我们连接了有条件的和Markovian的指数式家庭、固定的-统一的Markov链、各种(时间上的)ERGMs,以及诸如三角独立和可交换性等统计考虑因素。通过去除模型的时间依赖性而非可解释性,我们的方法简化了从文献中对某些网络和自动递减模型的分析,包括最大概率估计器的闭式表达式。我们还引入了“特异随机的美元-多位模型 ”, 其动机是用相应的多面体的单一观测取代对变异式-单一的Markov 图表链的美元观测结果。