Most of the existing literature on supervised learning problems focuses on the case when the training data set is drawn from an i.i.d. sample. However, many practical supervised learning problems are characterized by temporal dependence and strong correlation between the marginals of the data-generating process, suggesting that the i.i.d. assumption is not always justified. This problem has been already considered in the context of Markov chains satisfying the Doeblin condition. This condition, among other things, implies that the chain is not singular in its behavior, i.e. it is irreducible. In this article, we focus on the case when the training data set is drawn from a not necessarily irreducible Markov chain. Under the assumption that the chain is uniformly ergodic with respect to the $\mathrm{L}^1$-Wasserstein distance, and certain regularity assumptions on the hypothesis class and the state space of the chain, we first obtain a uniform convergence result for the corresponding sample error, and then we conclude learnability of the approximate sample error minimization algorithm and find its generalization bounds. At the end, a relative uniform convergence result for the sample error is also discussed.


翻译:关于受监督学习问题的现有文献大多侧重于从一.d抽样中提取培训数据集的情况,然而,许多实际受监督的学习问题的特点在于时间依赖和数据生成过程边缘之间的密切关联,这表明i.d.假设并不总是有正当理由的。这个问题已经在Markov链条满足Doeblin条件的背景下加以考虑。这一条件除其他外,意味着该链条的行为并不单一,即不可避免。在本条中,我们侧重于培训数据集来自不一定不可避免的Markov链条的情况。假设该链条对于$\mathrm{L ⁇ 1$-Wasserstein的距离是一致的,以及假设等级和链区的某些规律性假设,我们首先从相应的抽样错误中取得统一的趋同结果,然后我们得出大致的抽样差错最小化算法的可学习性,并找到其一般化的界限。在结尾,对于抽样错误的相对一致的结果也进行了讨论。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关论文
Top
微信扫码咨询专知VIP会员