This paper describes the first version (v1.0) of PyOED, a highly extensible scientific package that enables developing and testing model-constrained optimal experimental design (OED) for inverse problems. Specifically, PyOED aims to be a comprehensive Python toolkit for model-constrained OED. The package targets scientists and researchers interested in understanding the details of OED formulations and approaches. It is also meant to enable researchers to experiment with standard and innovative OED technologies with a wide range of test problems (e.g., simulation models). Thus, PyOED is continuously being expanded with a plethora of Bayesian inversion, DA, and OED methods as well as new scientific simulation models, observation error models, and observation operators. These pieces are added such that they can be permuted to enable testing OED methods in various settings of varying complexities. The PyOED core is completely written in Python and utilizes the inherent object-oriented capabilities; however, the current version of PyOED is meant to be extensible rather than scalable. Specifically, PyOED is developed to ``enable rapid development and benchmarking of OED methods with minimal coding effort and to maximize code reutilization.'' This paper provides a brief description of the PyOED layout and philosophy and provides a set of exemplary test cases and tutorials to demonstrate how the package can be utilized.
翻译:本文描述了PyOED的第一个版本(v1.0),PyOED是一个高度开放的科学包件,它能为反问题开发和测试模型受限制的最佳实验设计(OED),具体来说,PyOED的目的是为模型受限制的OED提供一个全面的Python工具包。包件针对有兴趣了解OED配方和方法细节的科学家和研究人员,还意在使研究人员能够试验标准和创新的OED技术,具有广泛的测试问题(例如模拟模型)。因此,PyOED正在不断扩大,使用大量的Bayesian、DA和OED方法以及新的科学模拟模型、观察错误模型和观察操作者,以及新的科学模拟模型、观察错误模型和观察操作者。这些包件被添加起来,能够在不同复杂情况中测试OED方法。PyOED核心完全以Python写成,利用内在的面向对象的能力;然而,目前版PyOED的模型不是可伸缩的。具体地,PyOED的缩略图和试算方法是用来展示一个可快速的硬化文件的缩图。</s>