In this paper, we present our work on the BioASQ pipeline. The goal is to answer four types of questions: summary, yes/no, factoids, and list. Our goal is to empirically evaluate different modules involved: the feature extractor and the sentence selection block. We used our pipeline to test the effectiveness of each module for all kinds of question types and perform error analysis. We defined metrics that are useful for future research related to the BioASQ pipeline critical to improve the performance of the training pipeline.


翻译:在本文中,我们介绍了我们关于生物ASQ编审程序的工作,目的是回答四类问题:摘要、是/否、事实类和清单。我们的目标是对所涉及的不同模块进行经验性评估:特征提取器和判决选择块。我们利用我们的编审程序测试每个模块在各类问题中的有效性,并进行错误分析。我们界定了对未来研究有用的衡量标准,这些衡量标准对生物ASQ对改善培训编审程序绩效至关重要的管道至关重要。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员