Isolating the real roots of univariate polynomials is a fundamental problem in symbolic computation and it is arguably one of the most important problems in computational mathematics. The problem has a long history decorated with numerous ingenious algorithms and furnishes an active area of research. However, the worst-case analysis of root-finding algorithms does not correlate with their practical performance. We develop a smoothed analysis framework for polynomials with integer coefficients to bridge the gap between the complexity estimates and the practical performance. In this setting, we derive that the expected bit complexity of DESCARTES solver to isolate the real roots of a polynomial, with coefficients uniformly distributed, is $\widetilde{\mathcal{O}}_B(d^2 + d \tau)$, where $d$ is the degree of the polynomial and $\tau$ the bitsize of the coefficients.
翻译:分解单体多元分子的真正根源是象征性计算中的一个基本问题,而且可以说是计算数学中最重要的问题之一。 这个问题有着悠久的历史, 由许多巧妙的算法来装饰, 并且提供了活跃的研究领域。 但是, 根调查算法的最坏分析与它们的实际表现并不相关。 我们为多体多元分子开发了一个平滑的分析框架, 并配有整数系数, 以弥合复杂估计和实际表现之间的差距。 在此环境下, 我们得出, DESCARTES 解析器在分离多数值分布一致的多元值的真正根源时, 所期望的微复杂性是 $\\ plitilde {O ⁇ B (d ⁇ 2 + d\tau)$, 其中美元是多元值的程度, 美元是系数的位数。