The divide-and-conquer method has been widely used for estimating large-scale kernel ridge regression estimates. Unfortunately, when the response variable is highly skewed, the divide-and-conquer kernel ridge regression (dacKRR) may overlook the underrepresented region and result in unacceptable results. We develop a novel response-adaptive partition strategy to overcome the limitation. In particular, we propose to allocate the replicates of some carefully identified informative observations to multiple nodes (local processors). The idea is analogous to the popular oversampling technique. Although such a technique has been widely used for addressing discrete label skewness, extending it to the dacKRR setting is nontrivial. We provide both theoretical and practical guidance on how to effectively over-sample the observations under the dacKRR setting. Furthermore, we show the proposed estimate has a smaller asymptotic mean squared error (AMSE) than that of the classical dacKRR estimate under mild conditions. Our theoretical findings are supported by both simulated and real-data analyses.


翻译:分化法被广泛用于估算大型内核脊回归估计值。不幸的是,当反应变量高度偏斜时,分化内核脊回归(dacKRR)可能会忽略代表性不足的区域,并导致无法接受的结果。我们制定了新的反应适应分治战略,以克服限制。我们特别提议将一些经仔细识别的信息性观测的复制件分配给多个节点(当地处理器),这与流行的过度采样技术类似。虽然这种技术被广泛用于处理离散标签偏差,将其扩大到达克RRR设置是非三重的。我们提供了理论和实践指导,说明如何有效地过度归纳在达克RR设置下的观测结果。此外,我们表明,拟议的估计数比在温和条件下的典型的达克KRR估计数(AMSE)的纯度平均正方差错误(AMSE)要小一些小。我们的理论结论得到模拟和真实数据分析的支持。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月11日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员