Point processes in time have a wide range of applications that include the claims arrival process in insurance or the analysis of queues in operations research. Due to advances in technology, such samples of point processes are increasingly encountered. A key object of interest is the local intensity function. It has a straightforward interpretation that allows to understand and explore point process data. We consider functional approaches for point processes, where one has a sample of repeated realizations of the point process. This situation is inherently connected with Cox processes, where the intensity functions of the replications are modeled as random functions. Here we study a situation where one records covariates for each replication of the process, such as the daily temperature for bike rentals. For modeling point processes as responses with vector covariates as predictors we propose a novel regression approach for the intensity function that is intrinsically nonparametric. While the intensity function of a point process that is only observed once on a fixed domain cannot be identified, we show how covariates and repeated observations of the process can be utilized to make consistent estimation possible, and we also derive asymptotic rates of convergence without invoking parametric assumptions.


翻译:时间点进程有各种各样的应用,包括保险中的索赔抵达程序或业务研究中队列分析。由于技术的进步,这种点点过程的样本越来越被人们所发现。关键的利益对象之一是局部强度函数。它有一个直截了当的解释,可以理解和探索点进程数据。我们考虑点进程的各种功能性方法,在点进程方面,人们有反复实现点过程的样本。这种情况与Cox进程有内在的联系,复制过程的强度功能以随机功能为模型。我们在这里研究一种情况,即每个复制过程的强度功能都有一个记录,例如自行车租赁的每日温度等。对于以矢量共变量作为预测器的反应,模型点进程,我们建议对本质上非参数性的强度函数采取新的回归法。虽然无法确定一个点进程只在一个固定域上观察到的强度功能,但我们要说明如何利用该过程的变数和反复观察来作出一致的估计,我们还得出不援引参数假设的趋同率。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
1+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年10月28日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员