Much work has been done in topology optimization of multiscale structures for maximum stiffness or minimum compliance design. Such approaches date back to the original homogenization-based work by Bends{\o}e and Kikuchi from 1988, which lately has been revived due to advances in manufacturing methods like additive manufacturing. Orthotropic microstructures locally oriented in principal stress directions provide for highly efficient stiffness optimal designs, whereas for the pure stiffness objective, porous isotropic microstructures are sub-optimal and hence not useful. It has, however, been postulated and exemplified that isotropic microstructures (infill) may enhance structural buckling stability but this has yet to be directly proven and optimized. In this work, we optimize buckling stability of multiscale structures with isotropic porous infill. To do this, we establish local density dependent Willam-Warnke yield surfaces based on local buckling estimates from Bloch-Floquet-based cell analysis to predict local instability of the homogenized materials. These local buckling-based stress constraints are combined with a global buckling criterion to obtain topology optimized designs that take both local and global buckling stability into account. De-homogenized structures with small and large cell sizes confirm validity of the approach and demonstrate huge structural gains as well as time savings compared to standard singlescale approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月12日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员