In this paper, we propose a projection method-based preconditioning strategy for solving volume penalized (VP) incompressible and low-Mach Navier-Stokes equations. The projection preconditioner enables the monolithic solution of the coupled velocity-pressure system in both single phase (uniform density and viscosity) and multiphase (variable density and viscosity) flow settings. In this approach, the penalty force is treated implicitly, which is allowed to take arbitrary large values without affecting the solver's convergence rate or causing numerical stiffness/instability. It is made possible by including the penalty term in the pressure Poisson equation (PPE), which was not included in previous works that solved VP incompressible Navier-Stokes equations using the projection method. We show how and where the Brinkman penalty term enters the PPE by re-deriving the projection algorithm for the VP method. Solver scalability under grid refinement is demonstrated, i.e., convergence is achieved with the same number of iterations regardless of the problem size. A manufactured solution in a single phase setting is used to determine the spatial accuracy of the penalized solution. Various values of body's permeability, denoted $\kappa$, are considered. Second-order pointwise accuracy is achieved for both velocity and pressure solutions for reasonably small values of $\kappa$. Error saturation occurs when $\kappa$ is extremely small, but the convergence rate of the solver does not degrade. The solver converges faster as $\kappa$ decreases, contrary to prior experience. A multiphase fluid-structure interaction (FSI) case is also simulated to evaluate the solver's performance (in terms of its number of iterations). The convergence rates remain robust in the multiphase case as well.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员