We study a signaling game between two firms competing to have their product chosen by a principal. The products have qualities drawn i.i.d. from a common prior. The principal aims to choose the better product, but the quality of a product can only be estimated via a coarse-grained threshold test: for chosen $\theta$, the principal learns whether a product's quality exceeds $\theta$ or not. We study this problem under two types of interactions. In the first, the principal does the testing herself, and can choose tests from a class of allowable tests. We show that the optimum strategy for the principal is to administer different tests to the two products: one which is passed with probability $\frac{1}{3}$ and the other with probability $\frac{2}{3}$. If, however, the principal is required to choose the tests in a symmetric manner (i.e., via an i.i.d.~distribution), then the optimal strategy is to choose tests whose probability of passing is drawn uniformly from $[\frac{1}{4}, \frac{3}{4}]$. In our second model, test difficulties are selected endogenously by the firms. This corresponds to a setting in which the firms must commit to their testing procedures before knowing the quality of their products. This interaction naturally gives rise to a signaling game; we characterize the unique Bayes-Nash Equilibrium of this game, which happens to be symmetric. We then calculate its Price of Anarchy in terms of the principal's probability of choosing the worse product. Finally, we show that by restricting both firms' set of available thresholds to choose from, the principal can lower the Price of Anarchy of the resulting equilibrium; however, there is a limit, in that for every (common) restricted set of tests, the equilibrium failure probability is strictly larger than under the optimal i.i.d. distribution.


翻译:我们研究两家公司之间的信号游戏, 两家公司竞相让其产品由本金选择。 产品具有共同的先前测试的品质 。 我们显示本金的最佳策略是管理两种产品的不同测试: 一种是概率 $\\%1\%3}, 另一种是概率 $\\\\\2\%3}。 但是, 如果本金需要以对称方式选择产品质量是否超过$\\theta$。 我们在两种互动中研究这一问题。 首先, 本金自己测试, 并且可以从一个允许测试类别中选择测试。 我们显示本金的最佳策略是管理两种产品的最佳策略: 一种是概率 $\\\\\\\\\\\\\\\\\\\3} 3} 美元, 另一种是概率, 一个是概率 概率 美元, 而另一个是概率 美元。 如果本金质公司需要选择测试的方式( i. i. i. d. d. lidealal) listal sreal sal ex laction the deal deal deal dressal dressal pressal ral dress rest ral ral dress dress ral dress ral ral ral ral rest rest ral rxxx i.

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
0+阅读 · 2021年12月16日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员