In recent years, researchers have been paying increasing attention to the threats brought by deep learning models to data security and privacy, especially in the field of domain adaptation. Existing unsupervised domain adaptation (UDA) methods can achieve promising performance without transferring data from source domain to target domain. However, UDA with representation alignment or self-supervised pseudo-labeling relies on the transferred source models. In many data-critical scenarios, methods based on model transferring may suffer from membership inference attacks and expose private data. In this paper, we aim to overcome a challenging new setting where the source models cannot be transferred to the target domain. We propose Domain Adaptation without Source Model, which refines information from source model. In order to gain more informative results, we further propose Distributionally Adversarial Training (DAT) to align the distribution of source data with that of target data. Experimental results on benchmarks of Digit-Five, Office-Caltech, Office-31, Office-Home, and DomainNet demonstrate the feasibility of our method without model transferring.


翻译:近年来,研究人员越来越关注深层次学习模型对数据安全和隐私造成的威胁,特别是在领域适应领域; 现有的未经监督的域适应方法可以在不将数据从源域转移到目标域的情况下取得有希望的绩效; 然而,具有代表性调整或自我监督的假标签的UDA依靠的是转移的来源模型; 在许多数据危急的假设中,基于模式转移的方法可能因会员推论攻击而受到影响,并暴露私人数据; 本文旨在克服一种具有挑战性的新环境,即源模型无法转移到目标域; 我们提议不采用源代码模型的域域适应方法,以完善来源模型中的信息; 为了获得更多的信息结果,我们进一步提议以分布式辅助性培训(DAT)使源数据的分配与目标数据相一致。 Digit-Five、Office-Caltech、Office-31、Office-Home和DomainNet的基准实验结果显示我们方法的可行性,而不采用模式转让。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
已删除
将门创投
5+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2020年3月17日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
已删除
将门创投
5+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员