This paper studies well-posedness and parameter sensitivity of the Square Root LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse problems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the optimal tuning of the regularization parameter is robust with respect to measurement noise. This paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak, intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness of the solution in question. The intermediate assumption yields a directionally differentiable and locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives continuous differentiability of said map around the point in question. Our analysis leads to new theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the "price" of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical findings.
翻译:本文研究平方根LASSO(SR-LASSO)的良好性质和参数敏感性,SR-LASSO是一个在有限维线性反问题中恢复稀疏解的优化模型。相对于标准LASSO,SR-LASSO的优势在于正则化参数的最佳调整对于测量噪声是鲁棒的。本文提供了在SR-LASSO的一个解上三个点态正则条件:弱、中、强假设。结果表明,弱条件意味着解的唯一性。中等条件则提供了一个方向可微和局部Lipschitz解映射(带有显式的Lipschitz界),而强条件则给出了在该点附近的映射的连续可微性。我们的分析提供了新的理论洞察:与LASSO相比,从调参敏感性的角度来看,SR-LASSO的鲁棒最优参数选择是以升高调参敏感性为“代价”的。数值结果支持并展示了理论发现。