Complementary features of randomized controlled trials (RCTs) and observational studies (OSs) can be used jointly to estimate the average treatment effect of a target population. We propose a calibration weighting estimator that enforces the covariate balance between the RCT and OS, therefore improving the trial-based estimator's generalizability. Exploiting semiparametric efficiency theory, we propose a doubly robust augmented calibration weighting estimator that achieves the efficiency bound derived under the identification assumptions. A nonparametric sieve method is provided as an alternative to the parametric approach, which enables the robust approximation of the nuisance functions and data-adaptive selection of outcome predictors for calibration. We establish asymptotic results and confirm the finite sample performances of the proposed estimators by simulation experiments and an application on the estimation of the treatment effect of adjuvant chemotherapy for early-stage non-small cell lung patients after surgery.
翻译:随机控制试验(RCTs)和观察研究(OSs)的补充性能可以共同用来估计目标人群的平均治疗效果。我们提议一个校准加权估计器,以强制在RCT和OS之间实现共变平衡,从而改进基于试验的估测器的一般性能。运用半参数效率理论,我们提议一个双强强化校准加权估计器,达到根据鉴定假设得出的效率约束值。我们提供了一种非参数筛选法,作为参数法的替代方法,使干扰功能和校准结果预测器的数据适应性选择能够稳健近似。我们通过模拟实验和对手术后早期非小细胞肺病人的抗动反应疗法的治疗效果估计应用来确定和确认拟议的估测器的有限抽样性能。