Cyclic codes have efficient encoding and decoding algorithms over finite fields, so that they have practical applications in communication systems, consumer electronics and data storage systems. The objective of this paper is to give eight new classes of optimal ternary cyclic codes with parameters $[3^m-1,3^m-1-2m,4]$, according to a result on the non-existence of solutions to a certain equation over $F_{3^m}$. It is worth noticing that some recent conclusions on such optimal ternary cyclic codes are some special cases of our work. More importantly, three of the nine open problems proposed by Ding and Helleseth in [8] are solved completely. In addition, another one among the nine open problems is also promoted.
翻译:Cyclic 代码对有限的域有高效的编码和解码算法,因此它们在通信系统、消费电子和数据储存系统中有实际应用,本文件的目的是根据对某方值超过$F$3 ⁇ m美元没有解决办法的结果,给8个新的最优长周期代码新类别($3cm1-3m-1-2m4美元),提供8个具有参数的最佳长周期代码。值得指出的是,最近关于这种最佳长周期代码的一些结论是我们工作中的一些特殊案例。更重要的是,丁和赫利斯在[8] 中提议的9个公开问题中,有3个得到了彻底解决。此外,9个开放式问题中还有一个也得到了推动。