Nonnegative matrix factorization (NMF) is the problem of approximating an input nonnegative matrix, $V$, as the product of two smaller nonnegative matrices, $W$ and $H$. In this paper, we introduce a general framework to design multiplicative updates (MU) for NMF based on $\beta$-divergences ($\beta$-NMF) with disjoint equality constraints, and with penalty terms in the objective function. By disjoint, we mean that each variable appears in at most one equality constraint. Our MU satisfy the set of constraints after each update of the variables during the optimization process, while guaranteeing that the objective function decreases monotonically. We showcase this framework on three NMF models, and show that it competes favorably the state of the art: (1)~$\beta$-NMF with sum-to-one constraints on the columns of $H$, (2) minimum-volume $\beta$-NMF with sum-to-one constraints on the columns of $W$, and (3) sparse $\beta$-NMF with $\ell_2$-norm constraints on the columns of $W$.
翻译:非负矩阵因子化(NMF)是接近一个输入的非负矩阵(V$)的问题,它是两个较小的非负矩阵(W美元和H美元)的产物。在本文件中,我们引入了一个总体框架,根据美元和元美元-差异($beta$-NMF),在平等限制不一致的情况下,并在客观功能中规定了惩罚条件,为NMF设计倍倍增更新(MU),我们指的是每个变量出现在一个最大的平等制约中。我们的MU在优化过程中,在每次更新变量后都满足一系列限制,同时保证目标功能单调降低。我们在三个NMF模型上展示了这一框架,并表明它优胜于艺术状态:(1) 美元-Beta$-NMF,对美元一列的限制为1,(2) 美元-元-Beta$-NMF,对美元一列的限制为$-美元;(3) 美元-MMF的美元-美元-美元-美元-正列,对美元-美元-正拉。