We study orbit codes in the field extension ${\mathbb F}_{q^n}$. First we show that the automorphism group of a cyclic orbit code is contained in the normalizer of the Singer subgroup if the orbit is generated by a subspace that is not contained in a proper subfield of ${\mathbb F}_{q^n}$. We then generalize to orbits under the normalizer of the Singer subgroup. In that situation some exceptional cases arise and some open cases remain. Finally we characterize linear isometries between such codes.
翻译:我们研究实地扩展的轨道代码 $\ mathbb F ⁇ q ⁇ n}$。 首先,我们证明循环轨道代码的自动形态组包含在Singer分组的归并器中,如果该轨道是由一个子空间产生的,而该子空间并不包含在$ mathbb F ⁇ q ⁇ n}$ 的适当子字段中。 然后,我们将它推广到Singer分组的归并器下的轨道。在这种情况下,出现了一些特殊案例,还有一些未解决的案例。最后,我们将线性代码分为线性。