L-BFGS is the state-of-the-art optimization method for many large scale inverse problems. It has a small memory footprint and achieves superlinear convergence. The method approximates Hessian based on an initial approximation and an update rule that models current local curvature information. The initial approximation greatly affects the scaling of a search direction and the overall convergence of the method. We propose a novel, simple, and effective way to initialize the Hessian. Typically, the objective function is a sum of a data-fidelity term and a regularizer. Often, the Hessian of the data-fidelity is computationally challenging, but the regularizer's Hessian is easy to compute. We replace the Hessian of the data-fidelity with a scalar and keep the Hessian of the regularizer to initialize the Hessian approximation at every iteration. The scalar satisfies the secant equation in the sense of ordinary and total least squares and geometric mean regression. Our new strategy not only leads to faster convergence, but the quality of the numerical solutions is generally superior to simple scaling based strategies. Specifically, the proposed schemes based on ordinary least squares formulation and geometric mean regression outperform the state-of-the-art schemes. The implementation of our strategy requires only a small change of a standard L-BFGS code. Our experiments on convex quadratic problems and non-convex image registration problems confirm the effectiveness of the proposed approach.


翻译:L-BFGS 是许多大型反向问题的最先进的优化方法。 它有一个小记忆足迹, 并实现了超级线性趋同。 该方法基于初始近似和最新规则, 模拟当前本地曲线信息。 初始近似影响搜索方向的缩放和该方法的总体趋同。 我们提出了一个新颖、 简单和有效的初始化黑森人的方法。 通常, 目标函数是一个数据忠实术语和定序器的总和。 通常, 数据忠实的黑森人在计算上具有挑战性, 但正规的黑森人很容易计算出来。 我们用一个标尺取代数据忠实信息的黑森规则, 并让正规的黑森人能够在每次迭代点上初始化黑森人的近似。 通常, 目标函数是数据忠实化术语的组合。 我们的新战略不仅导致更快的趋同, 而且正规的黑森的黑森规则也容易被计算出来。 我们的平面平面的平面化策略的精度, 以平面平面的平面的平面的平面战略的平面性平面模型的平面模型的平面法化比平面的平面战略的平平面的平面战略的平面, 平面的平面的平面的平面的平面图的平面图的平平面图的平面的平面图的平面图的平面图的平平平平平平平面的平面的平面的平面的平面的平面的平面的平面的平面的平面图。 平面的平面的平面的平的平平平面的平面的平面的平面的平面的平面图的平面图的平面图的平面图的平面图的平面图的平面图的平面图的平面的平面图的平面图的平面图的平面图的平面的平面的平面的平面图的平面图。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
15+阅读 · 2020年7月27日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
26+阅读 · 2020年4月1日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年5月7日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员