We analyze steady interface shapes in rotating right-circular cylindrical containers under rigid body rotation in zero gravity. Predictions are made near criticality, in which the interface, or part thereof, becomes straight and parallel to the axis of rotation. We examine geometries where the container is axially infinite and derive properties of their solutions. We then examine in detail two special cases of menisci in a cylindrical container: a meniscus spanning the cross section; and a meniscus forming a bubble. In each case we develop exact solutions for the respective axial lengths as infinite series in powers of appropriate rotation parameters; and we find the respective asymptotic behaviors as the shapes approach their critical configuration. Finally we apply the method of asymptotic approximants to yield analytical expressions for the axial lengths of menisci over the whole range of rotation speeds. In this application, the analytical solution is employed to examine errors in the assumption that the interface is a right circular cylinder; this assumption is key to the spinning bubble method used to measure surface tension.
翻译:我们用零重力在硬体旋转的圆柱形容器中分析固定的界面形状。 预测的临界度接近临界度, 其界面或部分界面直直并平行于旋转轴。 我们检查容器无轴无限的几何形, 并得出其溶液的特性。 然后我们详细研究圆柱形容器中两个单隐西特例: 横跨横跨横截段的月球; 形成一个泡泡。 在每一种情况下, 我们为相应的轴长度制定精确的解决方案, 作为适当的旋转参数的无限序列; 我们发现这些形状接近其关键配置时相应的无线行为。 最后, 我们应用了无线相近度的方法, 以产生整个旋转速度范围内的月球轴长度的分析表达方式。 在这个应用中, 分析解决方案用于检查假设界面为正确圆柱形的错误; 这是测量地表紧张度所使用的旋转泡方法的关键 。