A new construction for moderate density parity-check (MDPC) codes using finite geometry is proposed. We design a parity-check matrix for this family of binary codes as the concatenation of two matrices: the incidence matrix between points and lines of the Desarguesian projective plane and the incidence matrix between points and ovals of a projective bundle. A projective bundle is a special collection of ovals which pairwise meet in a unique point. We determine minimum distance and dimension of these codes, showing that they have a natural quasi-cyclic structure. In addition, we analyze the error-correction performance within one round of a modification of Gallager's bit-flipping decoding algorithm. In this setting, our codes have the best possible error-correction performance for this range of parameters.
翻译:提出了使用限定几何来构建中等密度等同检查(MDPC)代码的新结构。 我们为这个二进制代码组设计了一个对等检查矩阵,作为两个矩阵的组合:Desarguesian投影平面各点和行之间的事件矩阵和投影包各点和轨道之间的事件矩阵。 一个投影捆绑是一个特殊集合的双向匹配的奥瓦尔。 我们确定这些代码的最低距离和尺寸, 表明它们具有自然的准周期结构。 此外, 我们分析加列格的位谱解码算法的一回合修改中的错误校正性。 在此设置中, 我们的代码对一系列参数有最佳可能的错误纠正性能 。